
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106235 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b818

RTL REALIZATION OF SQUARE ROOT

METHODS FOR ARITHMETIC LOGIC UNIT

Subhash Kumar Sharma Umesh Kumar Gupta

Assistant Professor Associate Professor

Department Of Electronics Department of Mathematics

 MGPGCollege, Gorakhpur, U.P. MGPG College,Gorakhpur ,UP

Shri Prakash Dubey

Assistant Professor

Department of Physics

MGPGCollege, Gorakhpur, U.P.

ABSTRACT: This paper deals with three algorithms implementations for square root computation. New-

ton-Raphson's, Iterative and Binary Search Algorithm implementations are completely designed, verified and

compared. The algorithms, entire systems realization and their functioning are described.

KEYWORDS: Newton-Raphson’s Method, Iterative Method, Binary Search Algorithm.

1. INTRODUCTION

Digital systems for square root computation and division are still a challenge for IC designers. There are

many algorithms and their implementations. A unit with 24-bit input is considered here. Two optimization cri-

teria were used: chip area and speed. Therefore, the number of iterations for square root computation should

be minimal. Attention has been paid to three types of square-rooters.

2. NEWTON-RAPHSON'S METHOD

Following Newton-Raphson’s method (also known as Heron's), the square root value of number a is com-

puted through the iterative formula k+1

1

2
k

k

a
x x

x

 
  

 
 (1)

Digital system of this formula implementation is shown on Fig. 1.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106235 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b819

Fig.1. Block diagram of digital system for square-rooting based on Newton-Raphson’s method.

It is built of few subsystems: 24-bit register U2 used for storing the number that square-root should be com-

puted for; 13-bit register U1 in which temporary solution for square root is stored; subsystem U8 for the

division implementation; subsystem U5 for initial solution-value computing; adder U3 containing 13 full

adders; counter_2 that counts started divisions; sequencer U6 that has the control over subsystems. The

system ports are: signal clk for clock; start root for beginning of computation; end_root for the indication

of the operation completion, bus a(23:0) for getting the input number a; bus root(12:0) for output data.

How does the entire system function? At the beginning, number a, the dividend, is stored in register U2.

Unit for initial value computation, U5, gets the value a from register U2 and after time delay it produces

initial solution x0. After completion of generating x0, this value is available on the output of register U1 as

divisor. Subsystem for dividing divides values stored in registers U2 and U1, and quotient is added to the

value stored in register U1 and shifted right. After these operations, new solution x1 is stored in register U1.

Only one additional dividing operation is needed to reach the final value of square root, because the initial

value x0 is computed on appropriate way, instead assumed as the arbitrary value. In second dividing op-

eration, x1 is divisor. Quotient is added to x1, shifted right and stored in register U1. This final result can be

read on bus root (12:0).

Further, the attention will be paid on subsystems implementing the parts of square-rooter.

The computation of the initial value x0 of square root is done with the subsystem shown in Fig.2.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106235 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b820

Fig.2. Block diagram of digital subsystem for initial square- root-solution generation.

Its inputs are: clk for clock, start_gen for operation start, end_gen for signaling if unit finished its opera-

tion, 24-bit input bus a(23:0) and output bus x0(12:0). It consists of one shift register U1, counter U0 and

few simple logical gates. Input number a (for which the square root should be computed) is stored

in 24 least significant bits of 25-bit register U1. At the start of computation, the number of signifi-

cant digits of the input number is unknown and therefore it should be computed first: counter U0

counts the number of zeros before the most significant 1 in the input number a. After that, number a is

stored again in register U1. The number of digits in initial solution is twice less than the number of input

digits and it is stored in counter. Register U1 starts shifting to the right and counter starts decrementing its

value. When the counter reaches zero state, shifting is stopped and the value remained in U1 is initial

solution for square root.

The number of necessary clock iterations for initial value generation Ngen is: 1
25

2
gen

K
N

 
   

 
 where K is

the number of significant bits of input a. Ngen is in the range from 25, for computing square root of 1, to 14,

for computing square root of (FFFFFF)16. The division unit implements the manual or Longhand division

algorithm. Its structure is shown in Fig.3.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106235 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b821

Fig.3. Block diagram of division implementation subsystem.

Dividend is 24-bit number, divisor is 13-bit number and quotient is 13-bit number. At the beginning of di-

viding procedure, Register B (initially storing divisor) is shifted to the left until its value becomes greater

then value stored in Register A (dividend). The 5-bit counter counts the number of shifts. Then, counter starts

counting down, and the procedure of quotient-digits computing follow. Register A is shifted left for one bit.

Further, Register A changes its value, but Register B is keeping its value. The dividing procedure is per-

formed through the successive subtractions (Register A – Register B). Each time the result is negative, the

value Register A is shifted left for one position and zero is appended to Register C value on least significant

position. Else, result of subtraction, shifted left for one position, is stored in Register A and digit 1 is

appended to Register C. Since the number of quotient digits is equal to the number of shifts, the division opera-

tion is finished when counter reaches zero. The number of clock cycles needed for dividing is two times

greater than number of significant digits of the quotient. The total number of clock periods (for initial

value generation, two divide iterations, entering data in registers and control signals production) is in

range from 40, for computing square root of 1, to 72, for computing square root of (FFFFFF)16. System is

described in VHDL and synthesized by Xilinx.

3. ITERATIVE ALGORITHM:

Next, an old, traditional method for square root computation will be considered. It is known as Iterative meth-

od or Longhand square root computation method. Obtained results confirm the idea that traditional methods

are usually the best ones. The algorithm is very fast and its hardware implementation has small chip area. The

algorithm computes square root on the same way like people do manually: It starts with grouping the digits in

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106235 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b822

pairs, starting from the decimal point. The first digit of result is the greatest digit (e.g. bm) whose square is

less than the first group value. The positive remainder after square of bm has been subtracted from the first

group value, should be concatenated with next pair of digits and treated integral (e.g. value cm). Present result

is formed of found digits (at the beginning it is only bm) Next digit (e.g. bm-1) in the resulting number, is the

greatest number that meets the condition

 (20 * present_result + bm-1) * bm-1 ≤ cm (2)

The result of subtraction

 cm - (20 * present_result + bm-1) * bm-1 (3)

should be concatenated with next pair of digits (like previously) and treated integral (e.g. value cm-1) hereaf-

ter. Present result is appended by new digit bm-1. The procedure is repeated until all input groups of digits are

considered.

Fig.4. Block diagram of square rooter based on iterative algorithm.

Computation is significantly simpler if it is performed in radix 2. Like previous computation in radix 10, bina-

ry digits of number which square root should be found are grouped in pairs. In every iteration, two digits are

appended to the right side of the present result (digit 0 for multiplying by two and digit 1 for possible digit of

result). In radix 2 only digits 1 and 0 can be assumed for the next digit of result. Subtraction is performed, and

if minuend is grater then subtrahend, digit 1 is appended to present result. Result of subtraction, concatenated

with next pair of digits, form minuend for next subtraction. Else, present result is concatenated with zero.

Minuend concatenated with next pair of digits forms minuend for next iteration. Schematic of digital system

implementing iterative algorithm is given in Fig.4. System ports are: clk for clock, start_root for computation

beginning, input 24-bit bus a(23:0) for input data, output 11-bit bus root(11:0) for output data, output signal

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106235 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b823

end_root for indication that computation is finished. It consists of 36-bit register Reg1, 12-bit register Reg2,

subtractor Subt1 that consists of 14 full adders and 14 inverters, 4-bit counter Counter_4 and few simple logic

gates. At the beginning, 24 least significant bits of Reg1 get the input value a. Other 12 most significant bits

are set to zeros. Reg2 also gets zero value. Minuend is made of 14 most 70 significant bits of Reg1. Present

result is stored in Reg2. At the beginning of computation, present result is zero. Subtrahend is made of present

result and two binary digits, zero or one, appended to the right side of present result. If minuend is greater

than subtrahend, present result is appended by binary digit one. Difference is stored on minuend’s place, in 14

higher bits of Reg1. After that, Reg1 is shifted left for two positions. If minuend is smaller than subtrahend,

subtraction results are not stored. Reg1 is just shifted left for two positions. The algorithm is very fast. It uses

only 12 iterations for the square-root completion. Every iteration is completed exactly in one clock period.

4. BINARY SEARCH ALGORITHM:

This algorithm can be found solving many different tasks in programming. Here, this algorithm is modified to

speed up root computation. The computing procedure is simple: The resulting square root value e.g. am am-1

am-2 ... a1 a0, has twice less number of bits comparing to input number, 12 bits in our case. The algorithm finds

the value of square root bit-by-bit. First, the most significant bit am, is assumed to be 1 and other bits are ze-

ros. Number 100...0 is squared and subtracted from the input number. If the remainder is positive, the as-

sumed bit is correct. If not, the bit is 0. In the next iteration, the next bit am-1 is assumed to be 1. Number

am100...0 is squared and subtracted from the input number and the same considerations stand. The algorithm

proceeds until LSB is considered. In order to speed up the algorithm, square computation is modified: If the

temporary square-root solution is number A = amam-1am-2...ak0...0 (bits am, am-1, am-2,...,ak are computed in

previous iterations, others are still unknown and replaced by zeros), guess is A'=amam-1am-2...ak10...0, i.e., as-

sumed bit on position k-1 is 1. The square of the guess is computed using the square of temporary solution.

A'= (amam-1...ak10…0)2 = (am am-1 ……………..ak X 2k +2k-1)2 (4)

= (A + 2 k-1)2 =A 2+ 2 kA+2 2 k-2 where A is the temporary solution. So, if square of temporary solution is

known, square computation of guess is reduced to few shifting and addition operations. The algorithm is very

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106235 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b824

fast - it uses only 12 clock iterations for the square-root completion, like previously described iterative algo-

rithm.

Fig.6. Block diagram of square rooter based on binary search algorithm.

Schematic of digital system implementing binary search algorithm is shown in Fig.6. The system ports are:

clk port for clock, signal start_root for computation beginning, input 24-bit bus b(23:0) for input data, output

12-bit bus root(11:0) for output data, output signal end_root for indication that computation has been finished.

System is composed of: registers Reg1, Reg2 and Reg3; subtractor Subt1, adders Add1 and Add2 composed

only of logical OR gates; 4-bit synchronous counter Counter_4 and few simple logical gates in control logic.

These parts function as follows. Reg1 is 24-bit register that stores the difference of input value b and square of

temporary solution (A2). At the beginning of computation, temporary solution is A=00..0 (all binary numbers

are unknown), so Reg1 is loaded with number B. Reg2 is also 24-bit register and stores value 2kA, i.e., tempo-

rary solution shifted for k places (k is the number of unknown binary digits in temporary solution). At the start

of computation Reg2 is reset to all zeros. Reg3 is 12-bit register that holds 2k-1. At the beginning k is 12 and

Reg3 stores hexadecimal value 800. It means that 12 bits are unknown. After every clock rising edge, number

of unknown digits is decremented and the value in Reg3 is shifted right. Subtractor Subt1, composed of 24 full

adders and the same number of inverters, gives the control signal sel on carry_out output. If minuend is great-

er than subtrahend then sel is 1 and difference should be loaded into Reg1. Else, sel is 0 and Reg1 retains its

old value. Negative data should not be stored. Adders Add1 and

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106235 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b825

Add2 are composed of logical OR gates. They get values of Reg2 and Reg3 outputs on their inputs.

One of them provides subtrahend (23:0) on its output bus:

Subtrahend (23:0):=Reg2 + (Reg3)2 =2kA+22k-2 (5)

The other provides the data input for Reg2:

Reg2:=Reg2>>1+ (Reg3)2 =2k-1A+22k-2=2k-1(A+2k-1) =2k-1(am am-1 am-2 ... ak 10...0) = 2k-1A’ (6)

The >>1 denotes that Reg2 value is shifted one bit to the right. There is no carry transition, so OR logical

gates are used instead of full adders, providing significant saving in chip area. Number Reg2>>1 = 2kA>>1

has 2k-1 zeros at least significant positions, while (Reg3)2=22k-2. In every iteration, subtraction is performed.

Subtrahend, 2kA+22k-2, is subtracted from minuend, Reg1 value (B-A2). If minuend is greater than subtrahend,

guess A’ is correct and digit 1 is correctly assumed on bit position k-1. New temporary solution gets value

from previous guess A’. New values are stored in Reg1 and Reg2:

Reg1 :=(B-A2)- 2kA+22k-2=B-(A+2k-1)2=B-A’2 (7)

Reg2:= 2k-1A’ (8)

If minuend is less than subtrahend, guess A’ is incorrect and digit 1 is not correctly assumed on bit position k-

1, i.e., 0 is the solution for bit position k-1. Temporary solution A retains its value, so Reg1 value is the same

as previous one.

Value in Reg2 is shifted right for one bit position: Reg2:= (Reg2>>1) = (2kA>>1)=2k-1A (9)

After 12 (m+1=12) clock iterations, Reg2 holds correct value of square root which can be read on bus root

(11:0) 2kA = 20A = A = am am-1 am-2 ... a1 a0 (10)

The implementation is verified in VHDL, and synthesized in Xilinx synthesis tool.

5. RESULTS:

Comparing the implementations independently of the physical realization, we can see that the implementation

based on Newton-Raphson’s method requires greater number of clock periods (in range from 40 to 70 de-

pending on input data) than the other methods (exactly 12 clock cycles) for completing the square root solu-

tion. All systems are verified in VHDL and implemented in same standard cell technology. So, the properties

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106235 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b826

of the resulting solutions can be regularly compared. Namely, the first VHDL simulation was performed in

ModelSim tool. Logical synthesis is done in Xilinx.

6. CONCLUSION:

Three square root implementations were designed and their properties were compared. System implementa-

tion based on iterative algorithm provides the solution with smallest chip area and power consumption, and

maximal clock frequency. All proposed solutions are very flexible and can be modified if square root of a

number with more or less than 24 bits is required, if it is required to find bits after decimal point, etc. These

demands can be accomplished by minor changes in VHDL code. It is worth to notice that Newton-Raphson's

algorithm based square root computation circuit has the advantage of having built-in a division subsystem. So,

it can be applied in all circumstances where both are needed, integer division and square root computation. In

that case, significant saving in chip area can be accomplished.

REFERENCES:

1. M.Cornea-Hansen, B.Norin, “IA-64 Floating Point Operations and IEEE Standards for Binary Float-

ing Point Arithmetic”, IEEE Trans. Automat. Control, vol. AC-22, pp. 210-222, April 1977.

2. M.Cornea-Hansen, R.Golliver “Correctness Proofs Outline for Newton-Raphson Based Floating Point

Divide and Square Root”, New York: Wiley, 1975.

3. M.Cornea-Hasegan, “Proving IEEE Correctness of Iterative Floating-Point Square Root, Divide, and

Remainder Algorithms,” Intel Technology Journal,Q2, 1998 at

http://developer.intel.com/technology/itj/q21998.htm

4. J.P.Grossman, “Roll Your Own Divide/Square Root Unit”, June 24, 1999

5. Majerski, S. “Square-Rooting Algorithms for High- Speed Digital Circuits”, IEEE Transactions on

Computers, Vol. C-34, No. 8, August 1985, pp. 724-733

6. P.Freire, “Square Root Algorithms” http://www.pedro freire. com/sqrt

7. K.C.Chang, “Digital Systems Design with VHDL and Synthesis: An Integrated Approach”, IEEE

Computer Society, Los Alamitos, California 1999.

http://www.ijcrt.org/

